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NEUTRON TRANSMISSION VERSUS THICKNESS FOR SOME COMMON MATERIALS

ABSTRACT

Curves of neutron dose transmission versus thickness are presented

for laterally infinite slabs of several common materials for neutrons

incident at several fixed energies and angles. The materials are: water,

polyethylene (borated), iron, concrete, Nevada Test Site soil (area 7,

dry and 100 percent'saturated), laminated slabs containing one inch of

iron on the outside, a variable thickness of iron on the inside, and 3,6,9,

or 12 inches of polyethylene sandwiched between the layers of iron. The

neutron source energies are 0.5, 1, 2, 3, 5, and 14 MEV; the incident angles

are 0O , 30 ° , 450, and 709.

Sufficient additional material is presented for interpretation, evaluation,

and use of the results given.
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INTRODUCTION

During the past two years the Ballistic Research Laboratories have made

detailed and extensive calculations of the transport of neutrons through

several common materials. Some of the results of these calculations along

with a description of the methods employed have been reported in References

1 - 4. The purpose of the present report is to present all of our calculated

dose transmission factors for the materials treated. In some instances previous

results have been improved; in these instances the present results supersede

the previous results.

RESULTS AND DISCUSSION

Table 1 gives the densities and elemental compositions for all of the

materials treated. The results are contained in Figures 1 - 44.

Differential elastic cross sections are used for oxygen and iron. For

all other elements, elastic collisions are assumed isotropic in the center

of mass system.

Inelastic collisons are handled in two ways. For each element a "threshold

energy," Eth, is defined. For neutron energies (before any given collision)

above Eth, a nuclear temperature model with the temperature, T, given by

T = K E

is utilized. (T and E are measured in NEV.) For neutron energies before

collison below Eth, a single level, E7 , is assumed responsible for the in-

elastic scattering. All inelastic collisons are assumed isotropic in the

center of mass system. Table 1 gives the values employed for Eth, E7 , and

K for the various elements of concern.

The rad is the unit of dose employed in the calculations. The flux to

dose conversion factors are taken from Reference 5.

A cutoff energy of 10 electron volts is used throughout the calculations.

Figures 1 - 6 show the calculated dose transmission factors versus

thickness for water for six source energies and four incident angles. Figures

7 - 12 give similar results for borated polyethylene, while Figures 13 - 18

give similar results for iron. Several machine calculations performed for
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pure polyethylene slabs (up to six inches in thickness) show that the

differences in dose transmission between pure polyethylene and borated

polyethylene are negligible.

Figures 19 - 24 represent an attempt to scale neutron transport results

for several hydrogenous materials having quite different hydrogen contents.

The results are moderately good: a scale factor is found for each material

for each source energy but it is not always possible to draw a single curve

through the data for each incident energy, angle, and all materials. In some

cases two curves are required. One curve suffices for water and polyethylene;

the other suffices for Nevada Test Site soil (dry and 100 percent saturated)

and for concrete. The composition for Nevada Test Site soil is based on

Reference 6; that for concrete is based on Reference 7. For these materials,

atoms of all elements other than hydrogen, oxygen, aluminum, or silicon were

replaced by silicon atoms. (This changes the density slightly.)

Soils and concretes vary greatly in composition; their hydrogen contents

also vary greatly. Often the compositions are not well known; in the case of

soils the compositions often vary widely over small distances while their

hydrogen contents vary with the weather. Therefore, in many instances, high

accuracy is not required; the curves in Figures 19 - 24 can then be used to

estimate neutron transmission through soil or concrete satisfactorily.

Figures 25 - 42 give the dose transmission factors for laminated slabs

of iron and borated polyethylene. These slabs contain one inch of iron on

the outside, a variable thickness of iron on the inside and 3, 6, 9, or 12

inches of polyethylene sandwiched between the layers of iron. The curves

have not been drawn for values of the abscissa corresponding to less than one

inch of iron. In this region all of the iron is on the outside, while values

of the abscissa greater than unity imply one inch of iron on the outside and

the remainder on the inside. Thus the curves should be cusped at an abscissa

of unity. Since the calculated results do not suffice to determine the

detailed shapes of the curves, the curves have not been drawn for values of

the abscissa less than unity.

Figures 43 and 44 give dose transmission factors for normally incident

neutrons for five source energies for slabs of water and borated polyethylene.

The slab thicknesses here are greater than those in Figures 1 - 12. In the
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vicinity of twelve inches, the results in Figurds 43 and 44 differ slightly

from those in Figures 1 - 12. This is because additional Monte Carlo cal-

culations were made to obtain the results contained in Figures 43 and 44.

These were averaged with previous results for thicknesses at which previous

results were available. Therefore, the results in Figures 43 and 44 have

slightly smaller statistical errors associated with them than the previously

given results.

FURTHER DISCUSSION

Most of the results were obtained by Monte Carlo calculations. A

description of the basic machine program is contained in Reference 1. This

program has been modified in two important respects since the publication

of Reference 1. A "splitting" technique has been incorporated in the program.

This allows the calculation of much deeper penetrations than had been possible

previously. Handling of the information generated on the slab interior has

been changed. In particular, this allows making calculations for several

slab configurations simultaneously. (It also gives rise to more useful in-

formation on the slab interior than that described in Reference 1, but that

is not of concern here.)

Reference 3 describes a method of calculating deep penetrations based

on the fact that (the scattered) neutrons penetrating a thick medium achieve

a quasi -equilibrium several mean free paths from the source. This method, in

effect, allows determination of a relaxation length for the scattered neutrons

once quasi-equilibrium is established. Then the transmission for' any thick-

ness is readily calculated; however, the accuracy diminishes as the thickness

increases and there is no way of knowing at what depth the results cease to

be reliable. This method had been used for calculations of neutron trans-

mission through slabs several inches thicker than calculable by analog

Monte Carlo prior to the incorporation of the splitting technique in the

basic machine program.

Calculations made with the aid of the splitting technique have served

to substantiate the validity of the quasi-equilibrium method described in

Reference 3. In addition, the availability of calculated results for deeper

penetrations than could be made without the splitting technique has allowed

more accurate determination of the relaxation length applicable after quasi-

equilibrium is achieved. The deep penetration results also give good
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information on the approach to quasi-equilibriu. This improved information

has been used to calculate some of the results in this report, while other

of the deep penetration results have been made with the splitting technique.

It has not been possible to calculate all of the results employing the

splitting technique since computing machine time becomes very long for the

deep penetrations. However, a good many of the calculations were made by

this method on occasional weekends when the ORDVAC would otherwise have been

idle. The quasi-equilibrium method has been checked against the splitting

results whenever the latter were available since calculations by the quasi-

equilibrium method can be performed rapidly by hand. With the improved

values of the relaxation lengths now available, the two calculations agree

quite well in all cases.

FRANK J. AILEN

ARNOLD T. FTFERER

WILLIAM P. WRIGHT
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APPENDIX

THE DEEP PENETRATION PROBLEM

One of the outstanding problems in radiation transport is the calculation

of the transmission through a medium many mean free paths thick. The problem

is more difficult for laminated slabs than for a homogeneous material and it

is more difficult for oblique than for normal incidence. Recently a splitting*

technique was incorporated into the BR Monte Carlo neutron transport code

to deal with this problem. It is of some interest to consider what advantage

is gained by this technique.

We define the splitting advantage to be the ratio of the computing time

required to obtain a result by analog Monte Carlo to the time required to

obtain a result of like statistical validity with the aid of the splitting

technique. Figure A-1 gives three curves of splitting advantage versus

probability of transmission. One is a theoretical curve based on the study

in Reference 8. The other two are based on machine runs made with three

splitting surfaces and seven splitting surfaces, respectively.

It may be seen that the three curves have the same shapes. Seven splitting

surfaces are much better than three. Use of more surfaces would bring about

a further improvement. The theoretical curve is based on a simple case amenable

to analytical treatment; only absorption and forward scattering are allowed.

In obtaining the theoretical curve no allowance was made for any machine

operations other than those required to treat collisions. The points on the two

lower curves in Figure A-1 are based on machine runs for several materials

(including some laminated slabs), various thicknesses, incident energies and

incident angles. It was not always possible to choose either the positions of

* In this technique, a neutron, upon crossing any of several preselected surfaces,

is split into several neutrons. The weight of each of these is reduced in
proportion to the amount of splitting, so that the results are unbiased. The
simulation of the neutron's physical interaction processes is not altered in
this procedure.

** Three splitting surfaces were available in the machine program before seven
(the maximum available); several calculations were made &h three splitting
surfaces. The reason for this is connected with the difficulties caused by
the ORDVAC's small (4096 word) fast memory. Programming compromises had to
be made in order to obtain accurate physical input along with the desired
multiplicity of output information.
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the splitting surfaces 6r' he amount of splitting at each surface in an

optimum manner. For the deep penetrationscalculated, splitting factors

larger than two were required at most of the surfaces since only seven

splitting surfaces are available in the machine program. In view of these

facts, it is perhaps surprising that the curve for 7 splitting surfaces in

Figure A-I is as close to the theoretical curve as it is.

The preceding discussion lends strong support to the following, intuitively

clea;, assertion: in calculating the probability of transmission, the advantage

gained by splitting is mainly a function of this probability itself, and is

almost independent of the detailed sequences of events, the totality of which

determine this probability. This is in contrast to the state of affairs with

importance sampling: for use of this technique, one must know which classes

of event sequences are important beforehand in order to increase the sampling

of those trajectories which make the chief contributions to the transmission.

Figure A-i shows that the splitting advantage does not increase quite

as rapidly as the probability of transmission decreases. For example, a

decrease in probability of transmission from 10-2 to l0 "7, or five orders of

magnitude, is accompanied by a gain in splitting advantage of but four orders

of magnitude. This means that ten times as much time is required to compute

the probability of transmission for the case of lesser liklihood. Thus,

although the advantage gained by splitting is very great, it is not great

enough to make possible the calculation of arbitrarily deep penetrations.



M10

ME - -1 0

z/
U) I

10)Uz n
to /--

>~l

IL. WIE ~0. .0

izz

I EA In - 02-

0 10 2 2

3/IVAI - -II

I~Wz -15



TABLE 1

ELEMENT AL COMPOSITIONS AND AUXILIARY INFORMATION

Material Density' Elements Atoms Eth E K
Grams/cm Contained per cm, Eth M/2)

Water 1.0 H 66.9 - -

0 33.45 i0.0 6.3 0.469

8 percent •97 H 76.8 - -

Borated

Polyethylene C 39.2 10.0 4.43 0.267

B10  0.658 - --

B 2.67 - --

Iron 7.88 Fe 84.9 3.0 0.85 0.267

Nevada Test 1.15 H 8.553 - --

Site Soil 0 22.68 10.0 6.3 o.469
(Area 7)
Dry Al 2.014 3.0 0.96 0.294.

Si 9.533 6.0 1.8 0.294

Nevada Test 1.25 H 16.87 - -

Site (Area 7)
100 percent

Saturated 0 27.0 10.0 6.3 o.469

Al 1.976 3.0 o.96 0.294

Si 8.963 6.0 1.8 0.294

Concrete 2.26 H .13.75 - -

0 45.87 10.0 6.3 o.469

Al 1 .743 3.0 0.96 0.294

Si 20.15 6.0 1.8 ,o,294
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FIG. I NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENT
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FIG. I (contd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF JNCIDENCE
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,FIG. 2 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 2(cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 3 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND. ANGLE OF INCIDENCE
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FIG. 4 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 5 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 6 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 7 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG,7.(cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 8 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF
SLAB THICKNESS AND ANGLE OF INCIDENCE
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FIG. 8 (cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF
SLAB THICKNESS AND ANGLE OF INCIDENCE
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FIG. 9 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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fI~3. 10 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AtID ANGLE OF INCIDENCE
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FIG. 11 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 12 NEUTRON DOSE TRANSMISSION 'AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG., 13 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 14 NEUTRON DOSE TRANSMISSION AS. A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 15 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG', 16 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 17 NEUTRON DOSE TRANSMISSION AS. A FUNCTION OF SLA8
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 18 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 19 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE

INCIDENT ENERGY - 0.5 MEV.-

HOLLOW' SYMBOLS -POLYETHYLENE a WATER

10-3

I-

0 V,_

to 1 -

10-

1' OF POLYETHYLENE - 1.07" OF WATER
- 2.105" OF CONCRETE
a 2.665" NEVADA TEST SITE SOIL (100% SATURATED) ______

- 3.75" OF NEVADA TEST SITE SOIL (AREA 7)

10-9 1 1 1 1 1 1 1 I

THICKNESS OF POLYETHYLENE CINCHES)

39



FIG. 20 NEUTRON DOSE TRANSMISSION
AS A FUNCTION OF SLAB THICKNESS AND ANGLE OF INCIDENCE
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FIG. 21 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB THICKNESS
AND ANGLE OF INCIDENCE
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FIG. It NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB THICKNESS AND ANGLE
OF INCIDENCE
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FIGj 23 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF
SLAB THICKNESS AND- ANGLE OF INCIDENCE
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FIG. 2~4 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
10THICKNESS AND ANGLE OF INCIDENCE ____
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FIG. 25 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 26 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 27 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 2'8 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 29 019DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 30 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON16-2
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FIG.,. 31 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. M2 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. -33 DOSE TRANSMISSION FACTOR v.TOTAL THICKNESS OF IRON
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FIG. 34 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG., 35 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG.36 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIQ., 37 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 38 DOSE TRANSMISSION FACTOR s. TOTAL THICKNESS OF IRON
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FIG. 39 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 40 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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F10.41 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 42- DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 43 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND INCIDENT ENERGY
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FIG. 43 (cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND INCIDENT ENERGY
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FIG. 44 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND INCIDENT ENERGY
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